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CONVERSION FACTORS AND VERTICAL DATUM

The following factors may be used to convert the inch-pound units
used in this report to metric (SI) units:

Multiply By To obtain
inch 25.40 millimeter
foot 0.3048 meter
mile 1.609 kilometer
square mile 2.590 square kilometer
acre~foot 1,233 cubic meter
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cubic foot per second 28.32 liter per second
0.02832 cubic meter per second
short ton 0.9072 metric ton

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic
datum derived from a general adjustment of the first~order level nets of
both the United States and Canada, formerly called mean sea level.
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HYDROLOGY OF SALT WELLS CREEK--A PLAINS STREAM IN
SOUTHWESTERN WYOMING

By H. W. Lowham, Lewis L. Delong,
Kenneth R. Collier, and E. A. Zimmerman

ABSTRACT

Development of energy minerals in plains areas of Wyoming is in-
creasing rapidly. Such developments may affect water resources and
hydrologic relations of the plains; however, little information exists
concerning hydrologic processes of these areas. This report summarizes
results of a hydrologic study made during 1975-78 of Salt Wells Creek, a
stream typical of those in arid and semiarid plains areas in southwestern
Wyoming where mineral development is occurring.

Salt Wells Creek has a drainage area of about 500 square miles and
is located southeast of Rock Springs, Wyoming. The creek drains into
Bitter Creek, which is a tributary of the Green River. Numerous springs
in the headwaters cause small perennial flows in some upstream tributar-
ies. Evaporation, freezeup, and seepage deplete these flows so that the
middle and lower reaches of the main channel have only intermittent flows
as a result of snowmelt and rainfall runoff. The average annual runoff
of the stream is estimated to be about 2,000 to 3,000 acre-feet, which is
not a large amount in comparison to flows of major perennial streams of
southwestern Wyoming.

The intermittent nature of the streamflow has a significant effect
on water quality. '"Flushing" of accumulated salts and sediment occurs
during the first flows following rainfall or snowmelt. This flushing
follows dry periods when salts and loose sediment accumulate on the basin
surface and in the stream channels. The first flows during runoff trans-
port these materials as dissolved and suspended loads. After this ini-
tial flushing of the basin surface and channels, concentrations decrease.

Ground water is significant to the area because numerous springs in
the headwaters are used for stock and wildlife watering. Ground-water
quality depends greatly upon the source aquifer. Dissolved-solids con-
centrations ranged from 70 to 2,400 milligrams per liter. At 12 of the
14 ground-water sites where samples were collected, dissolved-solids
concentrations were less than 1,000 milligrams per liter. Calcium and
magnesium generally are the dominant cations and sulfate and bicarbonate,
the dominate anions.

A striking feature of Salt Wells Creek and its major tributaries is
their deeply incised channels. The incision is attributed to the cumula-
tive effects of: (1) A change in the relative amounts of annual precipi-
tation occurring as rain and snow, (2) a change in the base level of the
streambed due to downstream channelization, and (3) changes in land use.
Gullies are now expanding to include intervening tributaries, and an
erosion problem exists.,



INTRODUCTION

Located just southeast of Rock Springs, Wyo., Salt Wells Creek is an
intermittent stream that drains a 500 square-mile area comprised mainly
of arid or semiarid plains; the drainage pattern is shown in figure 1.
The stream heads in low-lying mountains near the Colorado-Wyoming State
line and flows in a northerly direction into Bitter Creek, a stream that
flows westerly through Rock Springs and eventually into the Green River.
The hydrology of Salt Wells Creek is typical of that for other basins in
the desolate, mineral-rich plains of southwestern Wyoming.

An increasing amount of attention is being directed toward these
areas due to their extensive coal, oil, gas, uranium, trona, and oil-
shale deposits. Large-scale developments of these deposits will require
an understanding of the plains environment, including its hydrology.
Prior to this study, few comprehensive investigations had been made and
little knowledge existed about hydrology of plains areas in southwestern
Wyoming (Lowham and others, 1976).
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One of the first written descriptions of a plains stream in south-
western Wyoming was made by D. G. Thomas (1912, p. 83, 84), whose outlook
of Bitter Creek follows:

Here's Bitter Creek; an empty thing
Save when the melting snow in spring
Rolls madly down the mountain's side
And fills its channel deep and wide.
At times it nearly overflows

With dirty water, as it goes

-Beyond the home of Noah Walters

Where it for a moment falters

To proudly view Jock Noble's castle
Before it starts to fight and wrestle
With old bottles, cans, and sundries
Certain men throw in on Sundays,
Mondays, Tuesdays and on all days
When they're drinking--which is always;
On it goes--its filthy charges

Dash against old Uncle George's

House on stilts, from which it dodges
Past the stable of Frank Hodges',

By Woll Dickson's humble dwelling;
Chopping, grinding, booming, swelling,
Curling, whirling, onward ever

Till it flows into Green River.

0, Classic Creek! rich in tradition
Of tragedy and superstition;

Your yearly, reckless inundation
Provides the means of sanitation;
Besides, the Lord knows very well
When you have purged yourself of smell
And other things that much displease
You've freed the town of foul disease.

[Excerpt from the poem ROCK SPRINGS reprinted from "Overland and Under-
ground," published with permission.]

Although 1light and humorous, the preceding description accurately

portrays the characteristic flashy and turbid flow of Bitter Creek, as
well as of Salt Wells Creek and other plains streams of the area.

Purpose and Scope

The study on which this report is based began during 1975 in cooper-
ation with the U.S. Bureau of Land Management as part of their Energy
Mineral Rehabilitation Inventory and Analysis program. The study was
directed toward determining hydrologic processes and their relation to
other aspects of the environment in the Salt Wells Creek basin, and how
this knowledge might be used in planning for the strip mining of coal.
Two strip mines are currently (1982) in operation in separate nearby
basins, and the possibility of future mining exists in the upstream part









Geology

Exposed bedrock in the study area is of sedimentary origin deposited
during Late Cretaceous and Tertiary time. Cretaceous strata that crop
out are shallow marine shale, near~shore fluvial sandstone and siltstone,
and lagoonal shale, mudstone, and coal. The Tertiary strata that crop
out are mostly stream- and lake-deposited sandstone and shale, and swamp-
deposited carbonaceous shale and coal.

Eleven geologic units that crop out in the Salt Wells Creek drainage
basin are significant to water quality and quantity. These units are
described in table 1 according to their lithologies, water-bearing char-
acteristics, and relative salinity of water in the units. The geologic
map (fig. 4) shows the areal distribution of these formations (excluding
Quaternary alluvium, which was not mapped due to its small areal extent).

Soils

Soils occurring in the study area are either of alluvial or residual
origin. The alluvium was deposited by flowing water and occurs mainly
along stream channels. Alluvial soils reflect a heterogeneous mixture of
parent materials, being derived from a variety of bedrock sources. The
residual soils are formed in situ upon parent bedrock; consequently, they
resemble the parent bedrock both in physical and chemical nature. Steep
slopes and slow weathering of parent rocks have allowed only thin, poorly
developed soils to form, although small isolated areas of deep soils
occur where eroded soil particles have accumulated. Soil depths range
from no soil on rock outcrops to nearly 5 feet along stream channels.
Soil types range from sandy to clayey loam and contain varying amounts of
soluble salts and small amounts of organic matter.

Climate

The Salt Wells Creek drainage basin has an arid to semiarid climate
that is characterized by an extreme range of temperatures, minimal rela-
tive humidity, abundant sunshine, and strong winds. Data from the weath-
er station at the Rock Springs airport show that at lower elevations
precipitation occurs mainly as rainfall during May and June. Snowfall
accounts for a significant part of the annual precipitation at higher
elevations. Based on a precipitation-distribution map prepared by the
Wyoming Water Planning Program (1965), average annual precipitation in
the basin ranges from 7 inches at the lower elevations to more than 9.5
inches in the higher mountainous areas.

Vegetation

At elevations above about 8,000 feet on Pine and Quaking Aspen
Mountains, pine and aspen trees are predominant. Juniper-pinyon woodland
communities occupy the steep escarpments and foothills between 7,000 and
8,000 feet in elevation. Sagebrush and grasses grow at elevations be-
tween 6,500 and 7,500 feet. Around the 6,500-foot elevation saltbush is
found growing on soils derived from saline marine shale. Greasewood
grows along downstream reaches of Salt Wells Creek (Bentley, and others,
1978, p. 47-59).
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Soil-Water-Vegetation Relationships

Water relationships in soils associated with native vegetation types
that grow along Gap Creek were studied by Reuben F. Miller (Shown and
others, 1977, p. 50). Miller reported, '"Most of the effective soil
moisture in the area is derived from snowmelt because most of the soil
moisture from rains during the growing season is lost by evaporation.
Wettest sites occur in low places where deep snowdrifts form. Vasey
rabbitbrush occurs with big sagebrush in upland depressions where snow
accumulates. Vigorous big sagebrush occurs with greasewood on lowland
terraces where snow accumulates, but this type also utilizes ground water
from the alluvium.

Drier areas on uplands where snow accumulation is minimal are occu-
pied by the black sagebrush-bluebunch-wheatgrass type, by the big sage-
brush-shadscale type, and by the big sagebrush-bottlebrush-squirreltail
type in steep, broken areas. The black sagebrush occurs on a coarse soil
where runoff is low and the bluebunch wheatgrass understory provides
appreciable herbaceaus forage and protects the soil from erosion.

Some greasewood occurs in the big sagebrush-bottlebrush-squirreltail
type indicating, as do the moisture relationships for the soil, that soil
moisture is perched above the 50-centimeter (20-inch) depth. Moisture
perching in the upper soil zone is also indicated in the Utah juniper
type."

Land Use

The Union Pacific Railroad was built along Bitter Creek during 1868,
and the first sheep and cattle were brought into the area around 1890.
0il and natural gas exploration began during 1900. Present day land use
in the study area includes livestock grazing, natural gas production,
mineral exploration (mainly coal, uranium, oil, and gas), hunting, and
more recently, off-road vehicle recreation.

More than 50 coal beds are
ineluded in the geologic forma-
tions, most of them in the Fort
Union or Almond Formations under-
lying the Salt Wells Creek basin
(Roehler, 1972, 1973a, and 1973b).
Minable reserves probably exceed 1
billion short tons under less than
3,000 feet of overburden. Some of
the coal beds are now (1982) being
mined in adjacent areas. Exten-
sive exploration has been done in
Salt Wells Creek basin although no
commercial development is vyet
(1982) underway. Exploration for
uranium in the basin has resulted — / \ .
in staking of many claims but ARy T M

there has been no commercial
=_ *B_\
development as yet (1982). —_—
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LOCATION-NUMBERING SYSTEM

Locations where streams are measured or sampled on a regular basis
are assigned eight-digit numbers, such as 09216565. The first two digits
(09) identify the site as being located in the Colorado River basin. The
remaining six digits identify the relative location of the site, with
numbers increasing progressively in the downstream direction.

Wells and miscellaneous sites where only a few measurements or
samples have been obtained are not assigned regular downstream station
numbers. Instead, these sites are identified by a 15-digit number, such
as 410343108592901. The first six digits designate latitude of the site,
the next seven digits designate longitude, and the last two digits are
sequence numbers to distinguish between several sites that may be in
close proximity of one another.

Surface- or ground-water data were obtained at 50 sites for this
study. For simplification purposes, a site number ranging from 1 through
50 was assigned to each site in addition to its regular or miscellaneous
station number. The site numbers were assigned in downstream order.

DATA COLLECTION

Locations where hydrologic data were collected as part of this study
are shown in figure 5. Site and station numbers, station names, and the
type of data available are listed in table 2. Since 1975, continuous-
record streamflow gages have been operated for one or more water years at
sites 10, 21, 25, and 50. Water-quality monitors that automatically
measure or sample stream temperature, specific conductance, and suspended
sediment were operated at sites 10 and 21. A monitor at site 25 measured
stream temperature and specific conductance. The remaining sites were
measured and sampled monthly or intermittently when water was flowing.

The continuous-record stations at sites 10 and 21 were installed on
major tributaries draining areas of significant coal deposits. Prelimi-
nary reconnaissance of the area indicated Gap Creek (site 21) to be
perennial; whereas, the reach of Salt Wells Creek near site 10 appeared
to be intermittent. The station and monitor at site 25 on Dry Canyon
were installed to obtain data representative of an ephemeral-type stream.
Site 50, located near the mouth of Salt Wells Creek, records virtually
all runoff from the basin. Sites 33, 47, and 48 had been operated
previously as partial-record sites for the purpose of determining peak
flows that occur during floods.

The main objective of installing the gages and monitors was to
obtain a continuous record of streamflow and water quality through the
seasons. In contrast, the main objective of sampling at other stream
sites was to determine the downstream changes in water quality for dif-
ferent seasons of the year. The springs and wells were sampled to obtain
information regarding the source aquifer. Only a few wells are present
in the area, and the ground-water data were obtained mainly from springs.
Hydrologic data collected as part of the study are published in Water-
Resources Data for Wyoming (U.S. Geological Survey, 1978a; 1978b; 1980)
for water years 1976-78.

12
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Figure 5.--Location of hydrologic-data-collection sites.
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TABLE 2, DESCRIPTION OF HYDROLOGIC~DATA~COLLECTION SITES

SAMPLING FREQUENCY: D=DAILY; M=MONTHLY; Q=QUARTERLY; I=INTERMITTENTLY

ANALYSIS SCHEDULE: 1=INSTANTANEOUS DISCHARGE; 2=ONSITE DETERMINATIONS
OF PH,SPECIFIC CONDUCTANCE,TEMPERATURE,DISSOLVED OXYGEN,AND (OR)
TURBIDITY; 3=SALINITY; 4=SUSPENDED SEDIMENT; 5=NUTRIENTS; 6=TRACE
METALS; 7=RADIOCHEMICALS; 8=PEAK FLOWS

STATION NUMBER

———— -

ANALYSIS
SCHEDULE

e e e o e e o e v e e e " S e ) v M T A S S R o Y S S A et S S S o o S O S e i o P D o e e o o D W S i e ) o ) ey ot e S ) e e e S B S S

10

11
12
13
14
15
16
17
18
19

20

21

22

23
24

410343108592901

410417108585301

410510108591401

410520108583201

410547108582301

410730108571001

410511109024701
410722108592001

410847109002301

09216565

411335108581501
411618108574001
411003109015601
411106109021701
09216570
09216572
411055109060201
411038109042101
411153109030201

09216574

09216576

411249109025601

411622108583501
411630108574801

STATION NAME SAMPLING
FREQUENCY
PINE LAKE ON PINE I, 1977
MOUNTAIN
SALT WELLS C BL PINE LAKE I, 1976

NR S BAXTER

SALT WELLS C AT SITE I, 1977

SW~2.4

SALT WELLS C TRIB SPRING I, 1976

NR S BAXTER

SALT WELLS C 6.0 MI AB 1,1976-77

ALKALT C NR S BAXTER

SALT WELLS C 2.2 MI AB I,1976-77

ALKALI C NR S BAXTER

ALKALI SPRINGS NR S BAXTER I, 1976

ALKALI C AT MOUTH, NR S I, 1976

BAXTER

SALT WELLS C BL ALKALI C, 1,1976-77

NR S BAXTER

SALT WELLS C NR S BAXTER I, 1974
M, 1975-
Q, 1975-
D, 1976-

JIM WASHUM SPRING NR S I, 1976

BAXTER

SALT WELLS C AB GAP C, NR I, 1976

S BAXTER M, 1976

GAP C NR RED C RANCH I, 1976

IRON SPRINGS NR S BAXTER I, 1976

GAP C AB BEANS SPRING C, M, 1975-

NR S BAXTER

BEANS SPRING C NR S BAXTER I, 1974
M, 1975-

LITTLE BASIN C TRIB NR S I, 1976

BAXTER

LITTLE BASIN C AT MOUTH, I, 1976

NR S BAXTER

GAP SPRING NR MOUTH BEANS I, 1976

SPRING C NR S BAXTER

BEANS SPRING C AT MOUTH, I, 1974

NR S BAXTER I, 1975
M, 1975-

GAP C BL BEANS SPRING C, I, 1974

NR S BAXTER I, 1975
M, 1975-
D,1975-76

TITSWORTH SPRING NR S I, 1976

BAXTER

DANS C NR S BAXTER I, 1976

GAP C AT MOUTH, NR S M, 1976

BAXTER I, 1976
I, 1977
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TABLE 2, DESCRIPTION OF HYDROLOGIC-DATA-COLLECTION SITES--CONTINUED

— e e e e e

SITE STATION NUMBER STATION NAME SAMPLING ANALYSIS
- _ FREQUENCY SCHEDULE
25 09216578 DRY CANYON NR S BAXTER M, 1976~ 2
D, 1976~ 1
26 411352108533001 DRY CANYON AB PIO RE, I, 1976 1,2,3,4,5
NR S BAXTER
27 411417108532901 PIO RE NR SALT WELLS I, 1976 1,2,3,5,
6,7
28 411639108564401 DRY CANYON AT MOUTH, NR I, 1976 1,2,3,4,
S BAXTER 5,6,7
29 411652108564701 SALT WELLS C BL DRY CANYON, I, 1976 1,2,3,4,
NR S BAXTER 5,7
30 411858108545501 SALT WELLS C AB E SALT I, 1976 1,2,3,4,5
WELLS C, NR S BAXTER
31 411016108490001 PUMPING WELL NR E DRAW-E I, 1963 2,3,4
SALT WELLS C CONFLUENCE
32 411845108541501 PUMPING WELL NR E SALT I, 1963 2,3,4
WELLS C-SALT WELLS C
CONFLUENCE
33 09216580 BIG FLAT DRAW NR ROCK M, 1975- 1,2,3,4,5
SPRINGS M, 1973- 8
34 411855108542401 E SALT WELLS C AT HWY 436 I, 1976 1,2,4
BRIDGE, NR S BAXTER
35 411900108545601 E SALT WELLS C AT MOUTH, I, 1976 1,2
NR S BAXTER
36 412000108565701 SALT WELLS C AB JOYCE C, I, 1976 1,2
NR S BAXTER
37 412125108562501 SALT WELLS C AB PRETTY I, 1976 1,2,4
WATER C, NR S BAXTER
38  412031109064501 CIRCLE SPRINGS NR SALT I, 1976 2,3,5
WELLS
39 412128109053001 SPRING ON CIRCLE SPRINGS I, 1976 2,3,5
DRAW, NR SALT WELLS
40 412409109053001 SPRING ON BURNT CANYON ¢, I, 1976 2,3,5
NR SALT WELLS
41 412130109025001 CIRCLE C NR SALT WELLS I, 1976 1,2,3,4,5
42 412126108562701 PRETTY WATER C AT MOUTH, I, 1976 1,2,3,4,5
NR S BAXTER
43 412324109005101 SPRING ON BLAIR C, NR S I, 1976 2,3,5
BAXTER
44 412827108550201 CUTTHROAT DRAW TRIB SPRING I, 1976 2,3,5
NR ROCK SPRINGS
45 412604109060001 SPRING ON PINE C AB NO I, 1976 2,3,5
NAME C, NR SALT WELLS
46 412813109032501 SPRING AT DORRENCE RECREA- I, 1976 2,3,5
TION PARK, NR SALT WELLS
47 09216695 NO NAME C NR ROCK SPRINGS M, 1975- 1,2,3,5
M, 1973- 8
48 09216700 SALT WELLS C NR ROCK I, 1967 1,5
SPRINGS I, 1974 1,2,5
I, 1975 1,2,5
M,1959-76 8
49 413530108571501 SALT WELLS C AT IRON CUL- I, 1976 1,2
VERT, NR ROCK SPRINGS
50 09216750 SALT WELLS C NR SALT WELLS M, 1975- 1,2,4
I, 1975- 3,5,6
Q, 1975- 7
D, 1976- 1
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DESCRIPTION OF THE HYDROLOGIC SYSTEM

The drainage of Salt Wells Creek has been affected by the Rock
Springs Uplift, The main-stem stream originates on Pine Mountain and
flows northward along strike valleys formed by the softer shale beds of
the Mesaverde Group (figs. 1 and 4). The stream flows into Bitter Creek
approximately 54.5 river miles downstream of Pine Mountain., Several of
the tributaries to Salt Wells Creek, such as Beans Spring Creek, Gap
Creek, Dry Canyon, and East Salt Wells Creek, have formed superposed
valleys that cut across pronounced hogback ridges of the Mesaverde Group
instead of following the strike of softer shale beds.

Water Use

The main use of water in the study area is for consumption by live-
stock and wildlife. About 15 springs and 12 wells provide the bulk of
this supply; several stockponds have been constructed on small headwater
tributaries.

Natural gas wells are scattered throughout the study area. Sporadic
exploration for additional oil and gas reserves continues (1982). The
exploratory drilling requires a dependable source of water, which is
commonly obtained from either surface-water impoundments or water wells
drilled at the sites.

Streamflow

Streamflow in Salt Wells Creek and its tributaries varies with the
position along the drainage. An appreciable amount of snow accumulates
during winter months on areas above about 7,000 feet. Therefore, snow-
melt during the spring months accounts for a significant part of annual
runoff for headwater tributaries draining these areas. Rainstorms also
contribute to runoff. Hydrographs of daily discharges recorded at sites
10 and 21 for different water years are shown in figures 6 and 7. Numer-
ous springs contribute perennial low flows to the headwater tributaries;
however, evapotranspiration, freezeup, and seepage deplete these flows so
that the downstream reach of Salt Wells Creek has only intermittent
flows. For example, daily discharges recorded for the 1977 water year at
site 50, which is located 3.0 river miles upstream from the mouth, are
shown in figure 8, A comparison of the daily discharges shown in figures
6 and 8 shows many more days of no flow occur at site 50 than at site 10.

Photographs show the downstream change in stream conditions (figs.
9-11). The photographs exemplify the changes that take place in the
channels and their flows from the headwater to downstream reaches.

Based on the available streamflow records and on observations of the
area during 1975-78, snowmelt seems to yield the major part of runoff
from the higher elevations of Salt Wells Creek basin. The relative yield
from rainstorms becomes more significant in the lower elevations of the
basin. Because precipitation varies significantly from year to year,
runoff varies significantly as well. Rainstorm runoff sometimes causes
large peak flows. (See figs. 6-8.) However, the duration of flow from
rainstorm runoff 1is relatively short in comparison to snowmelt runoff.

16
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Dissolved Inorganic Constituents

Concentrations of the major dissolved inorganic constituents in Salt
Wells Creek, with the exception of bicarbonate (HCO3) and carbonate
(CO3), increase in the downstream direction. Data collected March 31,
1976, during early spring runoff are shown in figure 13. As shown in
figure 14, increases in dissolved-solids concentrations in the downstream
direction are typical of Salt Wells Creek during other seasons and under
different streamflow conditions as well. On August 13, 1977, (fig. 14)
Salt Wells Creek was dry just downstream from site 10. On March 31,
1976, streamflow was continuous throughout the study reach.

The concentration of an individual ion (fig. 13) relative to the
concentrations of other ions may vary along the stream length. Down-
stream changes in composition of the water in Salt Wells Creek can be
seen on trilinear diagrams such as figures 15-17. Chemical analyses are
represented on the trilinear diagrams in milliequivalents per liter to
facilitate comparison of relative combining masses. (If two constituents
were to combine, the milliequivalents of one constituent would combine
with an equal number of milliequivalents of the other constituent). Each
chemical analysis is represented by three points on the diagrams. Based
on ratios among cations and anions, a point is positioned in each of the
equilateral triangles. The location of the third point is at the inter-
section of projection from the first two points into the rhombus. Analy-
ses with identical individual ion ratios plot identically on the diagram.
Conversely, different locations on the diagram represent different ion
ratios. A more complete discussion of the development and use of trilin-
ear diagrams is contained in Hem (1970, p. 264-270).

The downstream trend, moving sequentially from site 5 to site 30, is
toward increasing concentrations of sulfate (SO4) and chloride (C1)
relative to bicarbonate and carbonate throughout the year (figs. 15-17).
Equilibrium calculations, similar to those demonstrated in Hem (1966,
p. 64-77; 1970, p. 252-255), indicate that samples collected from Salt
Wells Creek are supersaturated with respect to calcium carbonate miner-
als, such as calcite and aragonite, but undersaturated with respect to
calcium sulfate minerals, such as gypsum and anhydrite. The relative
increase in sulfate concentration in the downstream direction could be
explained by preferential dissolution of sulfate minerals and subsequent
precipitation of calcium carbonate minerals.

There are numerous small springs in the headwaters of Salt Wells
Creek. Water flowing from these springs as well as discharge from the
unsaturated zone leach salts from surficial material. During periods
between precipitation, salts accumulate and are concentrated by evapo-
transpiration in channels as shown in figures 18 and 19. Runoff from
snowmelt or rainfall may readily dissolve the salts and, if sufficient in
magnitude, will flush salts from stream channels and other inundated
surfaces.
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EXPLANATION

.9 ANALYSIS FOR SAMPLE
COLLECTED AT SITE 9.

ARROW DESIGNATES
DOWNSTREAM
CHANGE IN

CHEMICAL
COMPOSITION.

CATIONS ANIO
PERCENTAGE OF TOTAL, IN
MILLIEQUIVALENTS PER LITER

Figure 15.--Chemical anaiyses of water samples
coliected at sites 5, 6, 9, 12, and
30, March 31, 1976.
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EXPLANATION

9 ANALYSIS FOR SAMPLE
COLLECTED AT SITE 9.

ARROW DESIGNATES
DOWNSTREAM
CHANGE IN

CHEMICAL
COMPOSITION.

[
9,

L

AV
O
- [}
NS

. V3 v}
< By

CATIONS AN(O

PERCENTAGE OF TOTAL, IN
MILLIEQUIVALENTS PER LITER

Figure 16.--Chemical analyses of water samples

collected at sites 5, 6, 9, 10, 29,
and 30, November 2, 19786.
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EXPLANATION

9 ANALYSIS FOR SAMPLE
COLLECTED AT SITE 9.

ARROW DESIGNATES

%,

DOWNSTREAM
CHANGE IN .
CHEMICAL 57
COMPOSITION. y
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CATIONS ANIONS

PERCENTAGE OF TOTAL, IN
MILLIEQUIVALENTS PER LITER

Figure 17.--Chemical analyses of water samples

collected at sites 5, 6, 9, 12, and
29, July 10, 1978.
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Figure 18.--Accumulation of salts in gully of East Salt Wells Creek at
site 34, May 18, 1979. View is downstream (northwest).
Gully is about 15-feet deep.

Figure 19.--Snowmelt runoff in Salt Wells Creek at site 30, May 18, 1979.
During periods of streamflow, the salt deposits are
dissolved and flushed downstream. View is downstream
(northeast). Depth of gully is about 15 feet.
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An example of the flushing action is shown in data collected at site
10. Dissolved-solids concentration there is related to specific conduc-
tance as shown in figure 20. Specific conductance and discharge recorded
at site 10 during runoff are given in figure 21. As indicated by speci-
fic conductance, dissolved-solids concentration increased and peaked as
the first of the runoff reached the site, then began to decrease before
the maximum streamflow at the site occurred.

The variation of dissolved-solids concentration with discharge is
shown schematically in figure 22. As streamflow begins, runoff originat-
ing furthermost upstream from the measurement site has the greatest
potential for dissolving salt by virtue of greater surface area contacted
en route to the site. Dissolved-solids concentration would be expected
to increase through the early period of runoff as water traveling greater
distances, transporting a greater concentration of salt, begins to arrive
at the measurement site. However, there is a finite amount of readily
soluble salt available to the water, and as it is depleted, dissolved-
solids concentration at the measurement site reaches a maximum and begins
to decrease. Streamflow may continue to increase, but by then the effect
of dilute water flowing over previously flushed surfaces is greater than
the effect of water flowing over newly contacted surfaces, and the
dissolved-solids concentration at the site continues to decrease.

The records of specific conductance and discharge shown in figure 21
are plotted in figure 23 showing a relation similar to that postulated in
the schematic diagram (fig. 22). In those stream reaches where base
flows are responsible for a very small part of overall streamflow, flush-
ing of salts by floods appears to be the major mechanism by which dis-
solved solids are transported from the basin.

Flushing by runoff also appears to be a dominant mechanism in the
transport of phosphorus. The direct relation between total-phosphorus
concentrations and suspended-sediment concentrations in samples collected
from surface water (fig. 24) indicates that phosphorus is transported
largely by suspended sediment. Sediment transport, described later in
this report, is affected by the flushing action of first flows.

The flushing action shown to occur during runoff of Salt Wells Creek
is a process that affects the quality of runoff from similar streams in
the plains of southwestern Wyoming. Although the amount of runoff from
intermittent or ephemeral streams (such as Salt Wells and Bitter Creeks)
may be small in relation to that of receiving streams (such as the Green
River) the flushing process results in relatively large concentrations of
material that may constitute a shock load to receiving streams, particu-~
larly during the low flow summer months. Runoff from arid and semiarid
plains areas is therefore significant to the water quality of the peren-
nial streams receiving such runoff.

The quality of runoff from plains areas is greatly dependent upon
the rates of accumulation of salt, sediment, and organic materials. The
principal factors governing the rate of material buildup between periods
of runoff are basin and channel characteristics, season of the year, and
land use (Overton and Meadows, 1976, p. 304-311). Subsequent removal of
these materials by runoff is dependent upon their composition, the amount
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SPECIFIC CONDUCTANCE, IN MICROMHOS
PER CENTIMETER AT 25¢° CELSIUS
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Figure 22.--Flushing of salts during runoff.
(Typical of a plains stream in
southwestern Wyoming).
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Figure 23.--Flushing of salts from channel as shown by variation

of specific conductance with discharge at site 10,

July 19-21, 1977.
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and form of precipitation, and especially the rate and duration of flow.
In a study of mechanisms affecting salt pickup and transport in surface
runoff, and possible means of reducing salinity in runoff from range-
lands, Bentley and others (1978, p. 111-139) determined that properly
implemented control measures can reduce erosion and salinity.

Trace Elements

Twenty-nine water samples from the basin have been analyzed for
selected trace elements. Twenty-three of the samples were collected at
stream sites 10, 21,-and 50; two are from springs at sites 4 and 11; and
the remainder are from stream sites 5, 12, and 28. Concentration ranges
of the trace elements commonly detected in samples from the basin (fig.
25) are "total" concentrations. "Total" in this instance refers to the
part of a particular element concentration in a sample that passes
through a 0.45-micrometer filter plus that which is extracted from parti-
culate matter in the sample by partial digestion (Skougstad and others,
1979, p. 21-22, 35). The 29 analyses do not provide a complete descrip-
tion of distribution and occurrence of trace elements in the basin but
rather are a reconnaissance of trace elements potentially available to
surface-water runoff from the basin.

Radiochemicals

The occurrence of uranium has been noted in the study area (Hausel
and others, 1979) and it is expected that water and fluvial sediment
should reflect this occurrence. Samples for general radiochemical analy-
sis were obtained from streams at sites 5, 12, 18, 20, 26, 28, and 29,
and from Jim Washum Spring at site 11. Gross alpha results for the
suspended sediment in the samples ranged from 16 to 163 micrograms urani-
um equivalent per gram of sediment. The results indicate the probable
presence of uranium or thorium. Ordinary organic shales contain from 10
to 40 micrograms uranium equivalent per gram of shale (Beers and Goodman,
1944, p. 1248), and the values reported for the study area would not be
considered unusual even if uraniferous rocks were not reported to be
present.

Aquatic Biology

A detailed description of biological communities in Salt Wells
Creek was presented by Engelke (1978). The description included popula-
tion distribution patterns, community edge effects, the food pyramid, and
nutrition (trophic) levels between various types of plants and animals.
Salt Wells Creek has a small nutrient level, a large number of diatom
taxa, a fairly large assqrtment of insect taxa, and several other inver-
tebrate taxa such as snails, worms, and scuds. Two species of fish--the
mountain sucker, Catostoma platyrhynchus (Cope) and the speckled dace,
Rhinichthys osculus (Girard)--were found in perennial reaches of the
stream.
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Sediment

Medium and high flows of Salt Wells Creek and its tributaries gen-
erally are turbid and have relatively large concentrations of suspended
sediment. The general sediment-transport characteristics of the stream
are shown in figure 26, which presents analytical results of three sep-
arate downstream samplings of Salt Wells Creek and its tributaries. The

samplings were made under three different runoff conditions: High,
medium, and low flows. Also shown on the figure are analytical results
of samples collected from the first flows of six floodwaves. These

samples were collected by automatic sampling devices located at sites 33,
47, and 48.

Results of the analyses indicate that during the first flows of a
floodwave, sediment concentrations sometimes exceed 100,000 milligrams
per liter. The relatively large concentrations are apparently the result
of a flushing action similar to the flushing of salts. Ephemeral streams
in the area commonly have periods of several months or more without flow,
during which the basin surface and channels accumulate loose material due
to weathering, bank caving, livestock and wildlife movement, and wind
deposits. This material is picked up readily and transported (flushed)
by the turbulent first flows of a floodwave. Once the basin surface and
channels have been flushed, the amount of sediment transported is depend-
ent upon supply (erosion of the upstream basin surface and streambanks)
and stream power (magnitude of discharge). The general sediment trans-
port capability of Salt Wells Creek and its major tributaries then re-
verts approximately to the relation shown in figure 26.

The flushing of sediment from the basin surface and small hills also
has been observed by Gregg C. Lusby (Shown and others, 1977, p. 28-49)
during rainfall simulation experiments that were made on several selected
areas along Gap Creek during June 1976. The simulation experiments were
made by measuring runoff and sediment yield following application of
simulated rainfall with a sprinkler system. The resulting data provide a
base for comparison with future changes in land use or land management
that might occur.

Sediment yields for source areas along Gap Creek were estimated by
Shown and others (1977, p. 51) using the qualitative Pacific Southwest
Inter-Agency Committee (1968) method. Shown reported that "Source-area
sediment yields for much of the study area are low to moderate with the
rates ranging from 0 to 0.9 acre-foot per square mile. Some of the
steeper, more barren areas have high sediment rates, which range from 0.9
to 1.6 acre-feet per square mile. Most of the sediment appears to be
coming off hillslopes with minor amounts from a few slowly-advancing
headcuts."

Turbidity
Turbidity is an expression of the optical property of water that
causes light rays to be scattered and absorbed. Turbidity is caused by a

variety of suspended particulate matter such as organic material and
sediment.
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The turbidity of Salt Wells Creek and its tributaries is caused
mainly by clay particles that are eroded from the basin surface following
snowmelt or rainfall. Low flows are relatively clear and generally had
turbidities of less than 200 Jackson turbidity units; medium and high
flows resulting from overland runoff yielded turbidities of up to 9,000
Jackson turbidity units. Turbid flood runoffs (results of rainstorms) in
two tributaries of Salt Wells Creek are shown in figures 27 and 28.

Channel Morphology

A striking feature of Salt Wells Creek and many of its tributaries
is their deeply incised channels. For example, a 22-foot incision (ver-
tical distance, terrace to flood plain) on Gap Creek near site 21 is
shown in figure 29. The
deepest incision observed
along the stream is 26 feet
at the mouth of Salt Wells
Creek (fig. 30). From sites N = ’“*CEEF;;;:;:;;::A‘*;aitSF
34 to 50, the main channel —
is 1incised an average of
about 16 feet. Most of the
major tributaries are in-
cised in their downstream
reaches, but erosion-
resistant outcrops have
prevented the incision from
extending uniformly through-
out the wupstream reaches.
Long-time residents of the
area say that substantial
development of gullies began
between 1890 and 1916.

Incision of the stream is attributed to the cumulative effects of:
(1) Change in climate, (2) change in base level due to downstream chan-
nelization, and (3) changes in land use. A description of these changes
follows:

1. Change in climate. An evaluation of tree-ring data by Schulman
(1945) indicates that in the Upper Colorado River basin a
period of minimum growth (indicating minimal soil moisture due
to minimal winter precipitation) occurred from 1870-1905.
During 1906-30 maximum growth (indicating significant winter
precipitation) occurred.

The tree-ring analysis offers no assurance that grass
cover was lush or that erosion of the basin surface was dif-
ferent during the period of maximum tree growth. But a change
in the relative amounts of runoffs from snowmelt and rainfall
could induce channel erosion because of the different sediment
yields associated with overland flows from the two sources.
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Figure 27.--Turbid rainstorm runoff in Dry Canyon at site 28, August 1,
1976. Looking upstream. Flow is 32 cubic feet per second.

Figure 28.--Turbid rainstorm runoff in Big Flat Draw at site 33, August 3,
1976. View is downstream. Flow is 36 cubic feet per second.
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Figure 29.--Incised channel of Gap Creek near site 21, looking downstream
(northwest), July 22, 1976.

Figure 30.--Incised channels of Bitter Creek and Salt Wells Creek, looking
upstream, August 12, 1979. Mouth of Salt Wells Creek is at
right center of photograph. Bitter Creek has been extensively
channelized in this reach. Depth of the gullies is about
26 feet.
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Snowfall is greatest in the higher elevations of the
headwater areas. During years when deep snowpacks accumulate
in these areas, significant runoffs occur during spring months.
In contrast, rainfall is more uniformly distributed throughout
the basin. The lower the elevation, the greater the percentage
of annual precipitation that occurs as rainfall.

The yield of sediment for overland flows generally is less
for snowmelt than for rainstorm runoff. This 1is because:

1. Smaller rates of runoff occur from snowmelt; hence,
sediment-transport capabilities are less than for
rainstorm runoff,

2. Overland flow during snowmelt commonly is over ice or
frozen ground,

3. A more erosion-resistant vegetative cover exists in
valleys of the headwater areas where snow tends to
accumulate, and

4. Erosion-resistant outcrops occur in the headwater
areas.

During 1870-1905 when snowmelt runoff was small, the
channel may have been receiving a relatively large part of its
water and sediment contribution from rainstorms in the down-
stream part of the basin. The main channel would adjust its
slope and size to convey this runoff and load. After 1906 when
snowfall became more significant, snowmelt would then consti-
tute a relatively larger part of total runoff for the stream.
The overland flows originating from snowmelt in the headwaters
would contribute a relatively small sediment washload. But,
when the snowmelt runoff accumulated in the channels, it would
have an affinity for sediment. Erosion of the channels and
subsequent downcutting may have been the result.

Change in base level of Bitter Creek. The channel of Bitter
Creek has incised 26 feet near the mouth of Salt Wells Creek.
This erosion has been caused in part by: (1) Extensive chan-
nelization of Bitter Creek, and (2) dewatering of upstream coal
mines.

Channelization of Bitter Creek was done to accommodate
construction of the highway and railroad. The channelization
involved straightening and shortening the channel of Bitter
Creek near the mouth of Salt Wells Creek. The slope of the
streambed was increased by channelization; this increased
stream velocities and accelerated channel erosion.

Dewatering of underground coal mines at Superior, Wyo.,
about 18 miles northeast of Rock Springs, involved pumping
water into Horsethief Canyon, an ephemeral tributary that
enters Bitter Creek about 9 river miles upstream from Salt
Wells Creek. The introduction of perennial flow to formerly
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ephemeral streams will accelerate channel erosion when, as is
the case with these streams, the streambeds are composed large-
ly of sand and smaller-sized material. Because the flow was
added without a sediment load, "there was no replacement of
eroded bed material and consequently the channel downcut.
Significant underground mining began about 1900 and continued
until 1954.

The combination of channelization and dewatering appears
to have induced extensive channel erosion and deep incision of
Bitter Creek at the mouth of Salt Wells Creek. The channel of
Salt Wells Creek has subsequently adjusted to the lower base
level. When a situation such as this occurs, headcutting and
erosion of the affected basin spreads upstream, until the
entire watershed has reached equilibrium with the new base
level.

Changes in land use. The Union Pacific Railroad was built
through the Bitter Creek Valley during 1868. This aided the
marketing of livestock. According to Albert Angelovich, long-
time resident and former rancher of the area, cattle and sheep
were brought into the area about 1890. Depletion of vegetative
cover by overgrazing results in less retardation of overland
flows, causing higher peak flows with more potential for chan-
nel erosion. Overgrazing may have initiated some gullying,
especially if it were coupled with several large floods.

The above changes were all about concurrent with the development of

gullies;

cause.

thus, none of them can be proven to be its sole or principal

However, because the incision has occurred, several undesirable

side effects are now present:

1.

Erosion is expanding to include the smaller tributaries and
basin surface as the drainage adjusts to the lower base level
of the main stem. This results in increased sediment loads,
which eventually reach and deposit in Flaming Gorge Reservoir.

Deep gullies form dangerous and formidable barriers to crossing
by people and animals.

Ground-water levels in alluvium bordering deeply incised
streams are lowered in accordance with elevations of the
streambeds. This commonly affects plant growth along the
streams.
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4, When shallow ground-water tables exist along an incised chan-
nel, ground-water inflows to the stream may increase. These
inflows generally are insufficient to cause perennial flow in
the stream; however, they can cause large amounts of dissolved
solids to be introduced to the stream. In addition to receiv-
ing greater quantities of ground-water inflow, an incised
stream exposes deeper soil materials that have not been exposed
to leaching as much as surface soils.

The gully and banks of an incised stream accumulate depos-
its of dissolved solids, as shown in figures 18 and 19. Sub-
sequent streamflows periodically flush the salts downstream.
(See figs. 21-23.)

Land-management practices that would lessen incision and accelerated
erosion on Salt Wells Creek, could provide benefits within the basin as
well as reduce sediment and dissolved-solids loads to the Green River and
Flaming Gorge Reservoir.

Ground-Water Quality

Ground-water quality in the study area is wvariable. Dissolved-
solids concentrations in samples collected ranged from 70 to 2,400 milli-
grams per liter. Samples were collected from 12 springs and 2 wells.
Seven of these samples had dissolved-solids concentrations of less than
500 milligrams per liter, and only two samples had concentrations greater
than 1,000 milligrams per liter.

The chemical composition of water samples collected from different
geologic units underlying Salt Wells Creek basin is illustrated in figure
31. The heights of the bars in figure 31 are proportional to the concen-
trations of ions expressed as milliequivalents per liter.

Samples of springs flowing from the Bishop Conglomerate (sites 40
and 45) had the smallest dissolved-solids concentrations (70 milligrams
per liter) of any ground-water sites sampled. This formation caps the
high hills and lies fairly flat, a favorable position to receive direct
recharge from rain and melting snow. The water would have been in con-
tact only with this formation and for a relatively short time. Calcium
and bicarbonate were dominant ions (see figure 31).

Site 4 is a spring flowing into a gully that is incised through the
Cathedral Bluffs Tongue of the Wasatch Formation. The Cathedral Bluffs
Tongue of the Wasatch Formation is therefore considered to be the source
aquifer for the spring though it appears at the surface a short distance
downstream from the contact with the underlying Wilkins Peak Member of
the Green River Formation. The water sample from this site had a
dissolved-solids concentration of 270 milligrams per liter. Calcium and
magnesium were the dominant cations, and bicarbonate the dominant anion.

Alkali Spring (site 7) discharges water from the Tipton Member of
the Green River Formation. The dissolved-solids concentration was 760
milligrams per liter in the sample from the spring. Magnesium was the
dominant cation although sodium was of almost equal concentration.
Bicarbonate was the dominant anion.
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Site 31 is a 145-foot well screened in the basal part of the Wasatch
Formation and, possibly, the uppermost part of the Fort Union Formation.
The dissolved-solids concentration of the sample from this well was 2,400
milligrams per liter--the largest concentration of any ground water
sampled in the study area. Calcium and bicarbonate were the dominant
ions.

The Almond Formation is the source of the water for the spring at
site 11 and the well at site 32. This formation is one of the principal
coal-bearing formations and is thus likely to be mined. The samples from
sites 11 and 32 had dissolved-solids concentrations of 973 and 711 milli-
grams per liter. Site 11, Jim Washum Spring, is at the contact between
the Almond Formation and the underlying Ericson Formation. Magnesium was
the dominant cation and sulfate the dominant anion in the sample. Site
32 is a 60-foot well drilled through alluvium into the Almond. The water
may be a blend of that from the alluvium and from the Almond. Sodium
dominated the cations and sulfate dominated the anions in the sample.

The Ericson Formation yields water to Gap Spring at site 19. The
sample had a dissolved-solids concentration of 320 milligrams per liter.
Calcium and bicarbonate were the dominant ions. The water from Gap
Spring is conspicuously rusty in appearance; the sample contained 2,500
micrograms per liter of dissolved iron.

Site 22, Titsworth Spring, is on a fault that cuts the Rock Springs
Formation. The sample had a dissolved-solids concentration of 700 milli-
grams per liter. Calcium was the dominant cation and bicarbonate, nearly
equaled by sulfate, dominated the anions.

Site 44 also is a spring along a fault. The fault cuts the Blair
Formation along Cutthroat Draw just downstream from the contact with the
Rock Springs Formation. The fault, upthrown on the downstream side,
forms a ground-water dam. This dam causes water from sandstone beds in
the Rock Springs Formation, percolating down the draw through weathered
Blair Formation, to rise to the surface. The dissolved-solids concentra-
tion in the sample was 1,290 milligrams per liter. Magnesium and sulfate
were the dominant ions.

The Blair Formation yields water to a spring at site 43. The
dissolved-solids concentration of the sample from this spring was 420
milligrams per liter. The dominant ions were calcium and bicarbonate.

Springs at sites 38, 39, and 46 produce water from the Baxter Shale.
Because the permeability of the Baxter generally is small and the rocks
gypsiferous, the springs sampled probably represent only superficial
circulation in weathered parts of the formation. Sites 38 and 46 pro-
duced samples with dissolved-solids concentrations of 470 and 420 milli-
grams per liter, dominated by calcium and bicarbonate. The water from
site 39 may represent a somewhat deeper circulation system. The sample
had 960 milligrams per liter of dissolved solids. Magnesium slightly
exceeded calcium, and sulfate slightly exceeded bicarbonate.

A trilinear diagram illustrating the ionic composition of water from
the ground-water sites sampled is shown in figure 32. Calcium is the
only cation that exceeded 60 percent of the total cations. Chloride was
less than 20 percent in all the samples. Sodium plus potassium exceeded
40 percent only in the sample from site 32.
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EXPLANATION

+9 ANALYSIS FOR SAMPLE
COLLECTED AT SITE 19, , -

13
CATIONS ANIONS
PERCENTAGE OF TOTAL, IN
MILLIEQUIVALENTS PER LITER’

Figure 32.--Chemical analyses of ground-water
samples.
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The quality of the ground water is a function of the present, pre-
mining, flow regime. If this flow regime is altered by mining activity,
as by disruption of aquifers by excavation, the ground-water quality
could be altered.

SUMMARY AND CONCLUSIONS

A variety of minerals, including coal, o0il and gas, oil shale,
uranium, and trona, are located in the plains of southwestern Wyoming.
Expected large-scale development of these minerals will require an under-
standing of the hydrologic environment of these plains. Salt Wells Creek
basin was selected for study as being representative of such areas.

Salt Wells Creek is predominantly an intermittent stream. Although
numerous springs cause perennial flows in several upstream tributaries,
evaporation, freezeup, and seepage deplete these flows so that the down-
stream reach has only intermittent flows. Direct runoff occurs from both
snowmelt and rainstorms. Rainstorm runoffs commonly have high peak
flows; however, the duration of
flow from rainfall is relatively
short in comparison to snowmelt.
The occurrence and amount of
runoff is wvariable from year to
year. Average annual runoff of
the stream 1is estimated to be
about 2,000 to 3,000 acre-feet.
This is not a significant amount
in comparison to flows of major
perennial streams of southwestern
Wyoming. For example, average
annual runoff of the Green River
into Flaming Gorge Reservoir is
more than 1,200,000 acre-feet.
However, the streamflows of Salt
Wells Creek and its tributaries
are important to the local envi-
ronment; the small springs are
especially important as water
supplies for wildlife and 1live-
stock.
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The quality of the intermittent flows of Salt Wells Creek, as well
as similar plains streams, may temporarily degrade receiving waters. The
intermittent flows cause water quality to be affected by a process known
as "first flush." During dry periods, salts, sediments, and organic
material accumulate on the basin surface and in the channels. Subsequent
rainfall or snowmelt dissolves or suspends these materials and flushes
them from the basin. Large concentrations of dissolved and suspended
materials were observed to occur during the first flows of floods. As
this pulse of inferior-quality water enters the Green River and Flaming
Gorge Reservoir, concentrations of dissolved and suspended materials in
their waters are increased temporarily. After the initial flushing of
the basin and channel, concentrations of these natural contaminants de-
crease and become dependent upon the magnitude of discharge. Dissolved-
solids concentrations then generally decrease and suspended-sediment
concentrations increase with the magnitude of discharge.
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The rate of salt, sediment, and organic material accumulation be-
tween periods of runoff is dependent upon basin characteristics, season
of the year, and land use (Overton and Meadows, 1976, p. 304-311). Sub-
sequent removal of these materials and the resulting water quality is
dependent upon the composition of the materials, the amount and form of
precipitation, and especially the rate and duration of flow. Control
measures can decrease the washoff of salts and sediment (Bentley and
others, 1978, p. 111-139).

Water from springs supports a fairly large assortment of insects and
other invertebrate taxa. In addition, two species of fish, mountain
sucker and speckled dace, were found in perennial tributaries. Many
plains streams of southwestern Wyoming may not have sufficient spring
inflows to support the same abundance of aquatic life found in Salt Wells
Creek.

A striking feature of Salt Wells Creek and its major tributaries is
their deeply incised channels. The gullying is attributed to: (1) A
historical change in the relative amounts of annual precipitation occur-
ring as rain or snow, (2) a change in the base level of Bitter Creek, and
(3) changes in land use. Because of the incision of the main channel,
erosion is now expanding to include smaller intervening tributaries.
Unless remedial action is taken, the erosion problem will become progres-
sively more serious resulting in further gullying, loss of topsoil, and
impaired water quality.

The most promising aquifer of the area for water-well development is
the Ericson Formation that is composed of thick, relatively permeable
sandstones, which yield fresh to slightly saline water. The largest
springs generally are supplied by water from the Bishop Conglomerate,
which is composed of poorly sorted cobbles, gravel, and coarse-grained
sandstone and yields fresh water. In 12 of the 14 ground-water samples
collected for the study, dissolved-solids concentrations were less than
1,000 milligrams per liter. In most of the samples magnesium and calcium
were the dominant cations and sulfate and bicarbonate were the dominant
anions.

The identification of hydrologic processes unique to Salt Wells
Creek and similar plains streams can aid in the design of land-management
plans, including those related to mining and reclamation, for such areas.
Strip mining of coal is expanding rapidly and can significantly affect
the hydrology and related environment of plains areas. In the study
area, the Fort Union and Almond Formations contain many extensive coal
beds and are thus the most likely to be mined. Depending on the loca-
tion, mining could alter the flow of ground water by creating new dis-
charge points, destroying parts of some aquifers, or changing the re-
charge pattern.
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